
Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/10/1 © Ren-Song Tsay, NTHU, Taiwan 29

6.2

Elementary
Graph

Operations

Graph Operations

 Graph traversal

◦ Depth-first search

◦ Breadth-first search

 Connected components

 Spanning trees

30

Depth-First Search (DFS)

 Starting from a vertex 𝑣

◦ Visit the vertex 𝑣 ⇒ DFS(𝑣).

◦ For each vertex 𝑤 adjacent to 𝑣, if 𝑤 is not visited

yet, then visit 𝑤 ⇒ DFS(𝑤).

◦ If a vertex 𝑢 is reached such that all its adjacent

vertices have been visited, we go back to the last

visited vertex.

 The search terminates when no unvisited

vertex can be reached from any of the

visited vertices.

31

6.2.1

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 2

4

Depth-First Search (DFS)

32

0

1

3

2

4 5 6

7

0 1 3 7

5 2 6

Recursive DFS

33

void Graph::DFS(void){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

DFS(0); // start search at vertex 0

delete [] visited;

}

void Graph::DFS(const int v){

// visit all previously unvisited vertices that are adjacent to v

output(v);

visited[v]=true;

for(each vertex w adjacent to v)

if(!visited[w]) DFS(w);

}

Non-Recursive DFS

34

void Graph::DFS(int v){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

Stack<int> s; // declare and init a stack

s.Push(v);

while(!s.IsEmpty()){

v = s.Top(); s.Pop();

if(!visited[v]){

output(v);

visited[v]=true;

for(each vertex w adjacent to v)

if(!visited[w]) s.Push(w);

}

}

}

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 3

DFS Complexity

 Adjacency matrix

◦ Time to determine all adjacent vertices: 𝑂(𝑛)

◦ At most 𝑛 vertices are visited:

𝑂(𝑛 ∙ 𝑛) = 𝑂(𝑛2)

 Adjacency lists

◦ There are 𝑛 + 2𝑒 chain nodes

◦ Each node in the adjacency list is examined at

most once. Time complexity = 𝑂(𝑒)

35

Breadth-First Search (BFS)

 Starting from a vertex 𝑣

◦ Visit the vertex 𝑣 .

◦ Visit all unvisited vertices adjacent to 𝑣.

◦ Unvisited vertices adjacent to these newly visited

vertices are then visited and so on…

36

6.2.2

4

Breadth-First Search (BFS)

37

0

1

3

2

4 5 6

7

0 1 2 3

5 6 7

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 4

BFS: Implementation

38

void Graph::BFS(int v){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

Queue<int> q; // declare and init a queue

q.Push(v);

visited[v]=true;

while(!q.IsEmpty()){

v = q.Front(); q.Pop();

output(v);

for(each vertex w adjacent to v){

if(!visited[w]){

q.Push(w);

visited[w]=true;

}

}

}

delete [] visited;

}

Time complexity is the same as DFS

Connected Components

 How to determine whether a graph is

connected or not?

◦ Call DFS or BFS once and check if there is any

unvisited vertices, if Yes, then the graph is not

connected.

 How to identify connected components

◦ Make a repeated calls to DFS or BFS.

◦ Each call will output a connected component.

◦ Start next call at an unvisited vertex.

39

6.2.3

Spanning Trees

 Definition: Any tree consists of solely of

edges in 𝐸(𝐺) and including all vertices of

𝑉(𝐺).

 Number of tree edges is 𝒏 − 𝟏.

 Add a non-tree edge will create a cycle.

40

6.2.4

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

Complete graph Possible spanning trees

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 5

DFS Spanning Tree

 Tree edges are those edges met during the

traversal.

41

0 1 3 7

4 5 2 6

DFS

0

1

3

2

4 5 6

7

0

1

3

2

4 5 6

7

BFS Spanning Tree

 Tree edges are those edges met during the

traversal.

42

0 1 2 3

4 5 6 7

BFS

0

1

3

2

4 5 6

7

0

1

3

2

4 5 6

7

