
Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/10/1 © Ren-Song Tsay, NTHU, Taiwan 29

6.2

Elementary
Graph

Operations

Graph Operations

 Graph traversal

◦ Depth-first search

◦ Breadth-first search

 Connected components

 Spanning trees

30

Depth-First Search (DFS)

 Starting from a vertex 𝑣

◦ Visit the vertex 𝑣 ⇒ DFS(𝑣).

◦ For each vertex 𝑤 adjacent to 𝑣, if 𝑤 is not visited

yet, then visit 𝑤 ⇒ DFS(𝑤).

◦ If a vertex 𝑢 is reached such that all its adjacent

vertices have been visited, we go back to the last

visited vertex.

 The search terminates when no unvisited

vertex can be reached from any of the

visited vertices.

31

6.2.1

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 2

4

Depth-First Search (DFS)

32

0

1

3

2

4 5 6

7

0 1 3 7

5 2 6

Recursive DFS

33

void Graph::DFS(void){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

DFS(0); // start search at vertex 0

delete [] visited;

}

void Graph::DFS(const int v){

// visit all previously unvisited vertices that are adjacent to v

output(v);

visited[v]=true;

for(each vertex w adjacent to v)

if(!visited[w]) DFS(w);

}

Non-Recursive DFS

34

void Graph::DFS(int v){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

Stack<int> s; // declare and init a stack

s.Push(v);

while(!s.IsEmpty()){

v = s.Top(); s.Pop();

if(!visited[v]){

output(v);

visited[v]=true;

for(each vertex w adjacent to v)

if(!visited[w]) s.Push(w);

}

}

}

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 3

DFS Complexity

 Adjacency matrix

◦ Time to determine all adjacent vertices: 𝑂(𝑛)

◦ At most 𝑛 vertices are visited:

𝑂(𝑛 ∙ 𝑛) = 𝑂(𝑛2)

 Adjacency lists

◦ There are 𝑛 + 2𝑒 chain nodes

◦ Each node in the adjacency list is examined at

most once. Time complexity = 𝑂(𝑒)

35

Breadth-First Search (BFS)

 Starting from a vertex 𝑣

◦ Visit the vertex 𝑣 .

◦ Visit all unvisited vertices adjacent to 𝑣.

◦ Unvisited vertices adjacent to these newly visited

vertices are then visited and so on…

36

6.2.2

4

Breadth-First Search (BFS)

37

0

1

3

2

4 5 6

7

0 1 2 3

5 6 7

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 4

BFS: Implementation

38

void Graph::BFS(int v){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

Queue<int> q; // declare and init a queue

q.Push(v);

visited[v]=true;

while(!q.IsEmpty()){

v = q.Front(); q.Pop();

output(v);

for(each vertex w adjacent to v){

if(!visited[w]){

q.Push(w);

visited[w]=true;

}

}

}

delete [] visited;

}

Time complexity is the same as DFS

Connected Components

 How to determine whether a graph is

connected or not?

◦ Call DFS or BFS once and check if there is any

unvisited vertices, if Yes, then the graph is not

connected.

 How to identify connected components

◦ Make a repeated calls to DFS or BFS.

◦ Each call will output a connected component.

◦ Start next call at an unvisited vertex.

39

6.2.3

Spanning Trees

 Definition: Any tree consists of solely of

edges in 𝐸(𝐺) and including all vertices of

𝑉(𝐺).

 Number of tree edges is 𝒏 − 𝟏.

 Add a non-tree edge will create a cycle.

40

6.2.4

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

Complete graph Possible spanning trees

Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 5

DFS Spanning Tree

 Tree edges are those edges met during the

traversal.

41

0 1 3 7

4 5 2 6

DFS

0

1

3

2

4 5 6

7

0

1

3

2

4 5 6

7

BFS Spanning Tree

 Tree edges are those edges met during the

traversal.

42

0 1 2 3

4 5 6 7

BFS

0

1

3

2

4 5 6

7

0

1

3

2

4 5 6

7

