
Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/10/1 ©  Ren-Song Tsay, NTHU, Taiwan 29

6.2

Elementary 
Graph 

Operations

Graph Operations

 Graph traversal

◦ Depth-first search

◦ Breadth-first search

 Connected components

 Spanning trees
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Depth-First Search (DFS)

 Starting from a vertex 𝑣

◦ Visit the vertex 𝑣 ⇒ DFS(𝑣).

◦ For each vertex 𝑤 adjacent to 𝑣, if 𝑤 is not visited 

yet, then visit 𝑤 ⇒ DFS(𝑤).

◦ If a vertex 𝑢 is reached such that all its adjacent 

vertices have been visited, we go back to the last 

visited vertex.

 The search terminates when no unvisited 

vertex can be reached from any of the 

visited vertices.
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Depth-First Search (DFS)
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Recursive DFS
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void Graph::DFS(void){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

DFS(0); // start search at vertex 0

delete [] visited;

}

void Graph::DFS(const int v){

// visit all previously unvisited vertices that are adjacent to v

output(v);

visited[v]=true;

for(each vertex w adjacent to v)

if(!visited[w]) DFS(w); 

}

Non-Recursive DFS
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void Graph::DFS(int v){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

Stack<int> s;          // declare and init a stack

s.Push(v);

while(!s.IsEmpty()){

v = s.Top(); s.Pop();

if(!visited[v]){

output(v);

visited[v]=true;

for(each vertex w adjacent to v)

if(!visited[w]) s.Push(w);

}

}

}



Prof. Ren-Song Tsay October 1, 2018

Chapter 1 — Computer Abstractions and Technology 3

DFS Complexity

 Adjacency matrix

◦ Time to determine all adjacent vertices: 𝑂(𝑛)

◦ At most 𝑛 vertices are visited: 

𝑂(𝑛 ∙ 𝑛) = 𝑂(𝑛2)

 Adjacency lists

◦ There are 𝑛 + 2𝑒 chain nodes

◦ Each node in the adjacency list is examined at 

most once. Time complexity = 𝑂(𝑒)
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Breadth-First Search (BFS)

 Starting from a vertex 𝑣

◦ Visit the vertex 𝑣 .

◦ Visit all unvisited vertices adjacent to 𝑣.

◦ Unvisited vertices adjacent to these newly visited 

vertices are then visited and so on…
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6.2.2
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Breadth-First Search (BFS)
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BFS: Implementation
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void Graph::BFS(int v){

visited = new bool[n]; // this is a data member of Graph

fill(visited, visited+n, false);

Queue<int> q;          // declare and init a queue

q.Push(v);

visited[v]=true;

while(!q.IsEmpty()){

v = q.Front(); q.Pop();

output(v);

for(each vertex w adjacent to v){

if(!visited[w]){

q.Push(w);

visited[w]=true;

}

}

}

delete [] visited;

}

Time complexity is the same as DFS

Connected Components

 How to determine whether a graph is 

connected or not?

◦ Call DFS or BFS once and check if there is any 

unvisited vertices, if Yes, then the graph is not 

connected.

 How to identify connected components

◦ Make a repeated calls to DFS or BFS.

◦ Each call will output a connected component.

◦ Start next call at an unvisited vertex.
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6.2.3

Spanning Trees

 Definition: Any tree consists of solely of 

edges in 𝐸(𝐺) and including all vertices of 

𝑉(𝐺).

 Number of tree edges is 𝒏 − 𝟏.

 Add a non-tree edge will create a cycle.
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6.2.4
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DFS Spanning Tree

 Tree edges are those edges met during the 

traversal.
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BFS Spanning Tree

 Tree edges are those edges met during the 

traversal.

42

0 1 2 3

4 5 6 7

BFS

0

1

3

2

4 5 6

7

0

1

3

2

4 5 6

7


