Prof. Ren-Song Tsay

October 1, 2018

Graph Operations

» Graph traversal
Depth-first search
Breadth-first search

» Connected components

» Spanning trees

6.2.1

Depth-First Search (DFS)

« Starting from a vertex v
> Visit the vertex v = DFS(v).

- For each vertex w adjacentto v, if w is not visited

yet, then visit w = DFS(w).

If a vertex u is reached such that all its adjacent
vertices have been visited, we go back to the last

visited vertex.
» The search terminates when no unvisited
vertex can be reached from any of the
visited vertices.

Chapter 1 — Computer Abstractions and Technology




Prof. Ren-Song Tsay October 1, 2018

Depth-First Search (DFS)

Recursive DFS

void Graph: :DFS (void) {
visited = new bool[n]; // this is a data member of Graph
£ill(visited, visited+n, false);
DFS(0) ; // start search at vertex 0
delete [] visited;

}

void Graph: :DFS(const int v){
// visit all previously unvisited vertices that are adjacent to v
output (v) ;

visited[v]=true;

for (each vertex w adjacent to v)
if (Ivisited[w]) DES(w);

Non-Recursive DFS

void Graph: :DFS(int v){
visited = new bool[n]; // this is a data member of Graph

£ill(visited, visited+n, false);

Stack<int> s; // declare and init a stack
s.Push(v);
while(!s.IsEmpty()){

v = s.Top(); s.Pop();

if(!visited[v]){

output (v) ;

visited[v]=true;

for (each vertex w adjacent to v)
if (Ivisited[w]) s.Push(w);

Chapter 1 — Computer Abstractions and Technology 2



Prof. Ren-Song Tsay

DFS Complexity

October 1, 2018

» Adjacency matrix
= Time to determine all adjacent vertices: 0(n)
© At most n vertices are visited:
O(n-n)=0(n?
» Adjacency lists
There are n + 2e chain nodes

Each node in the adjacency list is examined at
most once. Time complexity = 0(e)

6.2.2

Breadth-First Search (BFS)

« Starting from a vertex v
° Visit the vertex v .
> Visit all unvisited vertices adjacent to v.

< Unvisited vertices adjacent to these newly visited
vertices are then visited and so on...

Breadth-First Search (BFS)

Chapter 1 — Computer Abstractions and Technology




Prof. Ren-Song Tsay

BFS: Implementation

void Graph: :BFS (int v)(
visited = new booll[n]; // this is a data member of Graph
fill(visited, visited+n, false);
Queue<int> q; // declare and init a queue
q.Push(v) ;
visited[v]=true;
while (!q.IsEmpty () {
v = q.Front(); q.Pop();
output (v) ;
for (each vertex w adjacent to v){
if ('visited[w]){
q.Push(w) ;
visited[w]=true;
}
}
}
delete [] visited; | TiMe complexity is the same as DFS

October 1, 2018

623 Connected Components

» How to determine whether a graph is
connected or not?

- Call DFS or BFS once and check if there is any
unvisited vertices, if Yes, then the graph is not
connected.

» How to identify connected components

< Make a repeated calls to DFS or BFS.

- Each call will output a connected component.

- Start next call at an unvisited vertex.

624 Spanning Trees

« Definition: Any tree consists of solely of
edges in E(G) and including all vertices of
V(G).

* Number of tree edges is n — 1.

» Add a non-tree edge will create a cycle.

Complete graph Possible spanning trees

Chapter 1 — Computer Abstractions and Technology




Prof. Ren-Song Tsay October 1, 2018

DFS Spanning Tree

» Tree edges are those edges met during the
traversal.

On BC N

BFS Spanning Tree

» Tree edges are those edges met during the
traversal.

—_— —> —>

ONC RO T

Chapter 1 — Computer Abstractions and Technology 5



